
EDGEWOOD CHEMICAL BIOLOGICAL CENTER 
U.S. ARMY RESEARCH. DEVELOPMENT AND ENGINEERING COMMAND 

Aberdeen Proving Ground. MD 21010-5424 

ECBC-TR-922 

MULTIVARIABLE AND MULTIGROUP 
RECEIVER OPERATING CHARACTERISTICS 
CURVE ANALYSES FOR QUALITATIVE AND 

QUANTITATIVE ANALYSIS 

US ARMY 

RDECOM 



Disclaimer 

The findings in this report are not to be construed as an official Department of the Army 
position unless so designated by other authorizing documents. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining 
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for 
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a 
currently valid OMB control number   PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  

1. REPORT DATE (DD-MM-YYYY) 

06-01-2012 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

Dec 2009-Aug 2010 
4. TITLE AND SUBTITLE 

Multivariablc and Multigroup Receiver Operating Characteristics Curve Analyses for 
Qualitative and Quantitative Analysis 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Maswadch, Walecd M.; and Snyder, A. Peter 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Director, ECBC, ATTN: RDCB-DRD-P, APG, MD 21010-5424 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ECBC-TR-922 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
13. SUPPLEMENTARY NOTES 

14. ABSTRACT:   An algorithm was developed using univariate statistics to reduce and analyze multivariatc and multiple group 
data sets. The algorithm features the quantitative and selectivity figures of merit of receiver operating characteristics (ROC) 
curve methodology. This "merging" of two separate statistical analysis techniques resulted in the ability to address more than 
one variable in more than two experimental groups in a systematic fashion. The classic Fisher iris flower data set is treated as 
one variable and two cases at a time following conventional ROC curve methodology. Redundant, noisy, and low information- 
containing variables are removed. The remaining information-rich variables are systematically merged using ROC curve 
techniques. The new algorithm using ROC curve techniques produces a "master" vector of downsclectcd variables. The ROC 
curve technique can be used to process any data distribution whether linear or nonlinear; the inherent trend and fundamental 
nature of the raw data arc not compromised. No data set normalization or scaling procedures are necessary. Combining 
qualitative and quantitative aspects of data analysis into a univariate statistical method provides advantages in terms of 
algorithm understanding for the layman as well as enhanced computer efficiency and information-rich analysis. 

15. SUBJECT TERMS 
Multivariate analysis Sepal 
Univariate analysis Petal 
Frequency distribution AUC 
Receiver operating characteristics ROC curve 

Iris setosa 
Iris virginica 
Iris versicolor 

Fisher iris flower data set 
Area under the curve 
Angle of rotation 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 

U 
b. ABSTRACT 

u 
c. THIS PAGE 

u 

17. LIMITATION 
OF ABSTRACT 

UL 

18. NUMBER 
OF PAGES 

4S 

19a. NAME OF RESPONSIBLE PERSON 

Renu B. Rastogi 
19b. TELEPHONE NUMBER (include 
area code) 
(410)436-7545 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 

'^o\^o \\^>oo°\ 



Blank 



PREFACE 

The work described in this report was started in December 2009 and completed in August 
2010. 

The use of either trade or manufacturers' names in this report does not constitute an 
official endorsement of any commercial products. This report may not be cited for purposes of 
advertisement. 

This report has been approved for public release. Registered users should request 
additional copies from the Defense Technical Information Center; unregistered users should 
direct such requests to the National Technical Information Service. 

Acknowledgment 

The authors would like to acknowledge Professor Chung Chang, Department of 
Mathematical Sciences, New Jersey Institute of Technology (Newark, NJ) for discussions and 
guidance in the methodology of the algorithm. 



Blank 



CONTENTS 

1. INTRODUCTION 7 

2. THEORY 9 

2.1 Step 1 9 
2.2 Step 2 10 
2.3 Step 3 10 
2.4 Step 4 10 

3. RESULTS AND DISCUSSION 10 

3.1 Reduction of Variables 10 
3.1.1 /. versicohr and /. virginica 11 
3.1.2 TheACD 11 
3.1.3 /. setosa and /. virginica 12 
3.1.4 /. setosa and /. versicohr 12 
3.1.5 Iris Flower Analysis 13 
3.2 Data Integration 13 
3.2.1 Variable Processing 13 
3.2.2 Data Space Point Rotation 13 
3.2.2.1 Sepal Variables, Vl,2 13 
3.2.2.2 Sepal Variables and Petal Length, Vl-3 14 
3.2.2.3 All Four Iris Variables, Vl-4 15 
3.2.2.4 Petal Variables, V3,4 15 
3.3 Alternate Method of Analysis 16 

4. CONCLUSIONS 16 

LITERATURE CITED 17 

GLOSSARY 19 

APPENDIXES 

A. TABLES 21 
B. FIGURES 23 



Blank 



MULTIVARIABLE AND MULTIGROUP RECEIVER OPERATING CHARACTERISTICS 
CURVE ANALYSES FOR QUALITATIVE AND QUANTITATIVE ANALYSIS 

1. INTRODUCTION 

The extensive amount of data generated from a set of experiments can seem daunting 
as one approaches the sample determination and interpretation phases. It is desirable to extract as 
much qualitative and quantitative information as possible from an experimental analysis. 
Usually, replicate analyses are mandatory for consideration of the error inputs associated with an 
experimental set of data. Experimental designs that, for example, rely on spectroscopy, 
spectrometry, or chemical shift responses can easily generate an overwhelming amount of 
information for a typical experiment. When experimental data from replicate analyses are 
combined with a suite of different sample groups for comparison purposes, visual interpretations 
yield relatively poor conclusions for decision-making purposes. 

During the data analysis and interpretation phases, it is important to extract as much 
information as possible. Presentation of the raw data into a finished product requires the use of 
careful, well-thought-out statistical procedures. Thus, the data reduction phase is an important 
step in data analysis that provides a critical bridge between the raw data and the interpretation 
and decision-making processes. 

Multivariate analysis is an attractive data reduction technique that is used to convert 
an extensive amount of experimental sample data into a highly reduced set of qualitative, visual 
information. A typical data record can contain many hundreds to thousands of variables such as 
wavelength, wavenumber, mass to charge ratio (w/z), retention time, or chemical shift. By 
converting experimental records into points, a visual two- or three-dimensional plot can be 
obtained that consists of a dispersion of points in which each point is a complete experimental 
record.' 4 Depending on the data set and type of input, the principal component, discriminant, 
canonical variate, and dendrogram data reduction analyses can be implemented. The data records 
are reduced using the principal of a linear combination of variables. In general, most data sets do 
not follow or exhibit linear behavior. Nevertheless, multivariate data analysis is a widely used 
technique for mathematically forcing nonlinear data sets into a linear model. This can cause 
distortion of the data set during the data reduction analysis phase. In addition, condensing many 
hundreds of variables (dimensions) that are resident in a multivariate-dimensional data space into 
a two- or three-dimensional plot inherently produces a distorted view of the relative positioning 
of the experimental data points in the original multidimensional data space. 

Multivariate data analysis provides qualitative accounting for a set of experiments 
including interpretation and decision-making. A database can be constructed from a known set of 
substances to characterize and possibly identify an unknown or suspect sample with respect to its 
presence in the database. These are practical and important objectives for qualitative data 
analysis.1 

Another objective in data interpretation and decision-making concerns the 
quantitative information component. Characterization and identification of the data set with 



specific examples are important tasks, but the reliability, sensitivity, and specificity of the 
technique are just as important. The decision-making process relies on these figures of merit. 

Receiver operating characteristics (ROC) curve analysis was developed in the field of 
statistical decision theory and was broadened in the 1950s to the field of signal detection theory 
as a means of enabling radar operators to distinguish between enemy targets, friendly forces, and 
noise.5-6 ROC curves report on the quantitative aspects of a data set in an analysis.7 10 Replicate 
data are essential for an ROC analysis, because the replicate information contains various 
sources of error that inherently affect the analysis reliability and experimental error. These 
figures of merit factor into the decision-making process in a plot of sensitivity [true positive 
(TP)] on the ordinate and selectivity or specificity (1 - TN = FP) on the abscissa, where TN is 
true negative and FP is false positive. TP and TN characterize the data set and the reliability of 
decisions that are made on the experimental data set. An important parameter in ROC curve 
analysis is the area under the curve (AUC). The AUC is a separation measurement1'     between 
two groups of interest (positive/negative, healthy/diseased, go/no go, control/test subjects, 
present/absent, Group A/Group B, or green/red, to name a few). 

The AUC can also be considered as a measure of how well a variable can distinguish 
between two diagnostic groups. The AUC directly translates into the TP and false negative (FN) 
parameters, which are fundamental to decisions or conclusions from the data set observations 
and responses, including sample discrimination and/or future directions of analysis. Each point 
on an ROC curve represents a sensitivity/specificity pair corresponding to a particular decision 
threshold. A cutoff or threshold value is merely a perpendicular line drawn on a standard 
frequency plot of two distributions.   A series of perpendicular lines are drawn throughout the 
two frequency distributions, and the lines represent sensitivity and selectivity pairs of points to 
characterize the control and sample distributions of data. 

An ROC curve analysis retains the integrity of the data throughout the analysis. That 
is, unlike multivariate data analysis, a linear or nonlinear data set retains its integrity in the ROC 
analysis. When several ROC curves are compared, the AUC is usually the best discriminator.""15 

The AUC is calculated by the extended trapezoidal rule.13'14 ROC curve analysis is a univariate 
technique, and multivariate data analysis typically uses many variables (variates); hence, the 
term multivariate analysis. 

Scurfield   offered an extensive suite of experiments for arriving at an analysis of the 
volume under the surface (two variables and their frequency) or hypervolume under the volume 
(manifold, using three variables and their frequency). Hundreds of experiments were required to 
delineate the boundaries and internal data space of the volumes to produce an overall accounting 
of the response. Li and Fine18 took the entire data set of Scurfield1  and used bootstrap inference 
probability estimation methods to statistically reduce the data set for a more manageable data 
analysis algorithm. Yiannoutsos et al.19 used biochemical procedures that provided three classes 
of medical outcomes for human immunodeficiency virus patients. The three classes were 
partitioned over the same single variable, and each partition region was treated separately. A 
volume was calculated by plotting the (x, y, z) coordinates of the frequency probabilities from the 
response distribution of the one variable for the three classes.19 The volume under the surface of 



the responses (probability) was deemed equivalent to the AUC of a typical ROC curve. This 
analysis is unique to three classes being partitioned by one variable. 

We have developed an algorithm that applies ROC curve analysis on the intensity 
distribution for each variable in an experimental record over an entire data set of experiments. In 
Part 1 of the analysis, a frequency versus intensity distribution is constructed independently for 
each variable. Instead of the AUC, we used the area between the curve and the diagonal (ACD) 
line. Variables displaying a relatively high ACD were retained and variables with relatively low 
ACD values were considered as noise or as not relevant for discrimination purposes. The 
operation of Part 1 produced a reduced set of variables that provided information relevant to the 
samples. In Part 2, a series of interrogations was undertaken in which two variables at a time 
were used to plot their (x, y) intensity pairs throughout all the experiments (cases). A vector with 
a given angle from the abscissa was drawn, a frequency distribution was produced, an ROC 
curve was constructed from the frequency distribution, and the ACD was noted. The angle of the 
vector was incremented, and a new ROC curve was constructed. This occurred in increments 
over 360°. The angle with the highest ACD value and its vector were retained for those two 
variables. The vector for the first two variables (VI,2) became the next independent axis 
(abscissa), and the third variable intensity (V3) formed the independent axis (ordinate). The 
cases resident on VI,2 became the x values for they values from the respective cases on V3 
(variable 3 ordinate). The ROC curve analysis was continued to produce a VI -3 vector (vectors 
1, 2, and 3) and corresponding angle 1-3 (angles 1, 2, and 3). The process was repeated for every 
variable and resulted in (vector, angle) pairs in which the total number of pairs was equal to the 
number of variables minus 1. This database can therefore be used to investigate an unknown or 
target experimental output such as the probability of a spectrum belonging to a sample reference 
database. 

A univariate statistical technique has been created that combines the fundamental 
characteristics of multivariate data analysis and the quantitative information of an ROC curve. 

2. THEORY 

Details of the reduction of variables are presented in the Discussion section. The 
mathematical steps of the multivariable, multigroup ROC curve approach are presented as 
follows. Appendix A contains all tables, and Appendix B contains all figures. 

2.1 Step 1 

A point plot of the responses for the first two variables (VI and V2) in Table 1 is 
constructed. A vector labeled VI,2 is incrementally rotated between 0 and 360° through the four- 
quadrant point plot. At each increment, the angle of the vector (a) is noted with respect to the 
origin. At angular increments, a frequency distribution of the points is made with respect to the 
vector acting as the abscissa. The first vector is the original abscissa, labeled 0° rotation. From 
the frequency distribution, an ROC curve is constructed,7 l5 and the ACD is calculated. The 
vector angle is incremented to a new a, and a new frequency distribution is constructed with 
respect to that vector's new angle placement. An ROC curve is plotted from this new frequency 



distribution, and the ACD is noted. This occurs for every angular increment about the origin. 
Equations 1 and 2 provide the mathematical details: 

(VI,2), = (VI,2 + V2,2)°'5(cos(a0 - a)) (1) 

where cio = cos~'(Vl,/(Vl,2 + V2,2)05); i = 1,2, 3,..., m (rows) (2) 

2.2 Step 2 

The a and vector where the ACD is at a maximum are denoted a 1,2 and VI,2 for that 
pair of variables: 

(VI,2),- = (VI,2 + V2,2)05(cos(oo - a,.2)) (3) 

2.3 Step 3 

Steps 1 and 2 are repeated using the new combined column VI,2 from Step 2 with the 
next column V3 (see Table 1) to form vector Vl-3. 

2.4 Step 4 

Steps 1 through 3 are repeated until all the columns are combined. 

This approach reduces the original data matrix (Table 1) into one vector that 
combines the data from the four variables for all replicate measurements. The approach also 
identifies the maximum delineation and probability of separation between two groups of 
responses. 

3. RESULTS AND DISCUSSION 

3.1 Reduction of Variables 

The multivariate ROC curve method is illustrated using the classic Fisher data set.20 

This data set consists of the sepal and petal widths and lengths of 50 individual flowers from Iris 
setosa, I. versicolor, and /. virginica. The three iris species constitute three separate groups, and 
the sepal and petal widths and lengths represent four distinct variables. The Fisher data set is 
commonly used as a primer or example for multivariate data analysis presentations. However, 
the analysis herein follows the ROC curve procedure, which uses the response of one variable to 
discriminate between two groups. This procedure is strengthened by the systematic adding or 
"merging" of all of the variable responses. Part 1 provides an analysis for arriving at the fewest 
number of variables containing the greatest amount of information. 
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3.1.1 /. versicolor and /. virginica 

_20 Table 1 presents the original experimental data collected by Fisher   and includes the 
lengths and widths of the sepals and petals of the three iris flower species. The analysis began by 
establishing the integrity of the responses of an individual variable with respect to an ROC curve 
determination. The sepal lengths of/, versicolor and /. virginica were plotted in two frequency 
distributions for an ROC curve determination on the degree of separation between the two 
species. Figure 1 provides two histograms (frequency distributions) of the sepal lengths of the 
/. versicolor (filled circles) and /. virginica (triangles) species from Table 1. There were a total of 
50 points for each species; therefore, adding the filled circle or triangle ordinate values each 
yields 50. 

A typical ROC curve analysis consists of moving a vertical threshold or cutoff line 
from the left to the right (as in Figure 1) in increments (the increment here was 3.3 mm on the 
abscissa). In Figure 1, six vertical lines, or thresholds, are presented. A plot of the ROC curve is 
simply a representation of what percentage or fraction of each group resides on and to the left of 
a selected line. Usually, the left-hand distribution is chosen as the starting point of the analysis. 
The fraction of points on and to the left of line 1 consisted of 8% (4/50 = 0.08) /. versicolor 
(filled circles) and 2% (1/50 = 0.02) /. virginica (triangles). The fraction of each group was 
determined with respect to its own distribution. Thus, there was no meaning in the addition of the 
two percentages (pair of points, top of Figure 1). Lines 2-6 followed suit as /. versicolor, I. 
virginica: 42%, 6%; 78%, 38%; 98%, 76%; 100%, 88%; and 100%, 100%. The six points were 
marked in Figure 2 and provided the basis for the ROC curve. The /. versicolor and /. virginica 
species were plotted as fractions on the ordinate and abscissa, respectively. The analysis was 
with respect to the left-hand distribution; therefore, the left-hand distribution took the label of TP 
on the ordinate. The right-hand distribution took the form of the abscissa, or 1 - TN = FP. The 
ROC curve was obtained as in Figure 2, and the points corresponding to each threshold in 
Figure 1 were marked accordingly. The ACD, which is the area between the curve and the 45° 
diagonal line in Figure 2, could be calculated. Considering that the entire square space enclosed 
by 0, 0; 0, 1; 1, 0; and 1, 1 had an area equal to 1.0, the diagonal line provided two regions of 
0.5 each. 

3.1.2 The ACD 

The ACD is characteristic of the degree of separation between the two species 
(groups). When a tested variable provides essentially no discrimination ability between two 
groups, a Cartesian plot of (1 - TN, TP) yields an experimental line close to the 45° line. This 
occurs when the dispersion of variable responses in the frequency plot for the two groups 
overlaps to a significant extent; the ACD approaches zero. When a variable provides a 
significant degree of separation, a plot of (1 - TN, TP) yields an exponential curve that starts at 
0, 0, continues nearly straight up to approach 0, 1, and then is almost horizontal to 1, 1. The 
ACD in this case approaches 0.5, and this signifies a high degree of separation, or specificity, 
between the two measured groups. This occurs when the frequency distribution of variable 
responses for two groups has a high degree of separation with very little to no overlap. 



In Figure 2, the ACD is 0.2896. By multiplying the ACD by 200, a percent degree of 
separation was obtained. Thus, 0.2896 x 200 = 57.9 or -58%. Therefore, the sepal length has a 
58% probability of distinguishing between the two species of iris, which is a relatively poor 
degree of separation. This ROC curve process was repeated for the sepal width between the two 
iris species. An ACD of 0.1636 was obtained, and the percent separation was equal to 32.7%. 
Figures 3 and 4 present the frequency distribution plot and the ROC curve, respectively. The 
ROC curve was closer to the diagonal line in Figure 4 as compared to Figure 2. The sepal width 
displayed approximately half the degree of separation (32.7%) with respect to the sepal length 
(58%) for the Fisher data set. 

The analysis was repeated for the petal lengths and widths for the two species. 
Table 2 presents the ACD and percent separation for the analysis of the four variables. Figure 5 
is a plot of the four ACD values in Table 2. Columns 1-4 in Figure 5 represent the sepal length, 
sepal width, petal length, and petal width, respectively, for each of the three species in Table 1. 
Table 2 and Figure 5 provide significant information, because the results show that in Fisher's 
original data, the sepal contribution did not provide as good discrimination ability as the petal 
information. This result was attained by use of simple univariate ROC curve statistics as 
compared to the classical multivariate data analysis treatment.1"4 

Both the petal length and width allowed for a 96% degree of separation between the 
dispersion of the two measurements. Therefore, the original four variables may be reduced to 
only one variable, i.e., either petal length or petal width, for a satisfactory degree of separation 
between the two iris species. 

3.1.3 I. setosa and I. virginica 

The above process was repeated in a comparison of the four iris variables between the 
/. setosa and /. virginica species. Table 3 provides the reduced data set, and Figure 6 is a plot of 
the ACD values from Table 3. Note that petal lengths and widths, separately, provided a 100% 
degree of separation, and both produced an ideal ROC curve with an ACD of 0.5. This result 
signifies that multivariate analysis is not necessary when a simple univariate ROC curve analysis 
provides a satisfactory level of discrimination. Figure 7, A-D includes frequency distribution 
plots of the four variables for the /. setosa (open circles) and /. virginica (triangles) species with 
information for the ROC curves shown in the figure insets. The petal information provided a 
100% degree of separation for the two species, whereas the sepal length data produced a very 
high degree of separation (96.9%). Sepal width information resulted in a relatively poor degree 
of separation (66.8%). 

3.1.4 /. setosa and /. versicolor 

Univariate iteration was performed for a comparison of the /. setosa (open circles) 
and /. versicolor (triangles) species as shown in Figure 8, A-E and Table 4. Data reduction and 
analysis were performed in a similar fashion as shown in Figures 6 and 7, A-D and Tables 2 and 
3. Again, the petal width and length variables achieved a 100% separation between the two 
species. For the entire data set, there was no need for further analysis, because the three iris 
species could be distinguished from one another with a 96 to 100% degree of separation where 
only one variable was necessary for the distribution of any two groups. 
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3.1.5 Iris Flower Analysis 

The above data analysis essentially identifies variables that contribute a significant 
amount of discriminating information. Generally, experimental data consist of many variables 
(hundreds to thousands) such as spectroscopy (wavenumber or wavelength) and spectrometry 
(m/z or ion mobility drift time) spectra. It is these types of data sets that would most benefit by a 
reduction of variables. The variable reduction also identifies the least discriminating and noisy 
variables that need not be considered in subsequent analyses. Also, further analysis is necessary 
when a reduction of variables procedure provides multiple variables that yield less than 
satisfactory discrimination capability. 

3.2 Data Integration 

3.2.1 Variable Processing 

The iris data set did not require further analysis. However, to show the strengths of 
the data analysis concept presented herein, all four variables were considered for further 
processing, and the resulting three different sets of species analyses were analyzed and 
compared. 

3.2.2 Data Space Point Rotation 

Part 2 of the data analysis consisted of merging the variables in a systematic fashion 
with an ROC curve analysis at each variable inclusion. This accounting of the variables took 
place with two groups of experiments at a time. In the case of the iris data, analysis of three 
species required three sets of two groups: /. setosa, I. versicolor, I. setosa, I. virginica; and 
/. versicolor, I. virginica. Each group was treated separately with all four variables in a 
systematic procedure that used univariate statistics. The /. versicolor, I. virginica pair of species 
was addressed first. The figure symbols are as presented above. 

3.2.2.1       Sepal Variables, VI,2 

Instead of a frequency plot of distance for only one variable, an (JC, v) pair of axes was 
constructed in which the abscissa was that of variable 1 (VI, sepal length), and the ordinate was 
that of variable 2 (V2, sepal width). Figure 9A shows the point plot for the /. versicolor and /. 
virginica species. Fifty points were plotted for each species. A series of steps was performed in 
either of two equivalent ways, and one of the procedures is presented in a comprehensive 
fashion. 

The data space of points was uniformly rotated in 10° increments, and an analysis 
was performed at each angle increment including an ROC curve ACD determination. At the 
start, no rotation was necessary, and this was labeled as a 0° rotation (Figure 9A). A 
perpendicular line was drawn to the abscissa from all 100 points. This was the same as the 
original JC axis or VI axis, where VI is a label for the first variable vector or sepal length. 
Intensity bins were formed on the x axis, and the number of filled circle and triangle points in 
each bin were summed and plotted in Figure 9B as a frequency distribution. The two sets of 
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points yielded two distribution curves. An ROC curve analysis was performed on the two 
distributions as shown in Figure 9C to calculate an ACD. The abscissa, which consisted of the 
placements of the sepal length of all 100 points, the 0° rotation value, and the ACD, was then 
saved. 

The 100 points were then uniformly rotated 10° (Figure 9D). A perpendicular line 
from all 100 points was drawn to the* axis; this can be considered a modifiedx axis from the 
original abscissa. Intensity bins were formed on this new x axis, and the numbers of filled circle 
and triangle points were counted and plotted (Figure 9E) as a frequency distribution. The two 
sets of points formed two distribution curves as in Figure 9E, and the ROC curve is shown in 
Figure 9F. The ACD is noted with the 10° modified x axis, with the placement of all 100 points 
on that axis. 

These steps were repeated at every 10° increment of data space point rotation. An 
ROC curve ACD was derived for each pair of distributions of the sepal distances at each rotation 
increment. Figure 9G shows a 330° rotation of the points, which produced the maximum ACD, 
and Figure 9H shows the distribution of both sets of points for the /. versicolor and /. virginica 
species from Figure 9G. Figure 91 is the ROC curve for the data in Figure 9G. 

Figure 10A is a plot of a select set of the ROC curves at different data space rotations. 
Note that there are ROC curves that lie below the 45° line. Between 0° and 180°, the 1 - TN and 
TP values were plotted with respect to the /. versicolor points lying to the left of the /. virginica 
species in a VI-V2 plot. Between 180° and 360°, the points were rotated such that the /. 
versicolor points were to the right of the /. virginica species. This produced ROC curves below 
the diagonal line. Figure 10B is a plot of the rotation angle versus its respective ROC curve ACD 
value. The 330° rotation provided the maximum ACD value of 0.29. An ACD of 0.29 is 
equivalent to a 58% degree of separation for the two iris species using both sepal dimensions. An 
ACD of 0.29 is not a satisfactory degree of separation; rather, an ACD close to 0.5 is desired. 
Therefore, it was necessary to consider the next variable for inclusion and merging to possibly 
improve the ACD experimental value. 

3.2.2.2       Sepal Variables and Petal Length, Vl-3 

The vector generated by the angle at 330° was labeled VI,2, because it provided the 
best separation between the two distributions with respect to the ACD value with the sepal 
dimensions. VI,2 became the new abscissa, and the ordinate represented the vector for the third 
variable, i.e., petal length or V3. Figure 11A presents a data space with the abscissa and ordinate 
as VI,2 and V3, respectively. All 100 points were plotted in the data space accordingly. Note 
that each of the 100 points had its x value on the VI,2 axis. All steps and procedures were 
performed with a 10° rotation increment along with an ROC curve analysis for the /. versicolor 
and /. virginica species data. Figure 1 IB shows the point plot at a 250° rotation of the data 
points, which yielded a maximum ACD value, and Figure 11C shows an overlay of the two 
frequency distribution curves. Figure 11D presents an ROC curve analysis, and Figure 11E is a 
plot that shows the angle of rotation versus the ACD. Note that the maximum ACD of 0.49 
occurred at a 250° angle. An ACD of 0.49 is equivalent to a 98% degree of separation for the 
two iris species. Therefore, the petal length (V3) provides a major source of differentiation 
compared to both sepal variables. 

14 



3.2.2.3 All Four Iris Variables, V1-4 

The vector at 250° was referred to as Vl-3, and it contained information from vectors 
1, 2, and 3. This vector became the new abscissa, and variable 4 or petal width became V4 on the 
ordinate. All 100 points were plotted in the data space (Figure 12A). This representation 
translated a four-dimensional data set (four variables or vectors) into a two-dimensional data 
space without loss of the inherent data set characteristics and trends. Figure 12B shows a 330° 
rotation of the dispersion of points, and Figure 12C presents an overlay of the two frequency 
distribution curves. A rotation angle of 330° provided the highest ACD upon an ROC curve 
analysis (Figure 12D) of all rotation angles. An ACD of 0.4998 was obtained, which corresponds 
to a 99.6% degree of separation between the two iris species. 

3.2.2.4 Petal Variables, V3,4 

This analysis leads to the question regarding whether all four variables are necessary 
to produce a 99.6% degree of separation. To answer this question, the data set was analyzed 
using only petal length (V3) and petal width (V4). This reduced the problem to two variables and 
two groups, which is still beyond the standard ROC curve analysis of only one variable 
distinguishing between two groups. Generally, the more information that can be applied to a 
statistical problem, the greater the degree that a satisfactory resolution can be achieved. Note that 
this new statistical technique allows for many variables to be introduced in an analysis of two 
groups for qualitative as well as ROC curve quantitative and selectivity information. As more 
variables are considered, a larger ACD and hence better discrimination between the two groups 
is achieved. The frequency distributions at maximum ACD values versus the numbers of 
variables considered can be compared in Figures 9H (Vl-2), 11C (Vl-3), and 12C (V1^4). The 
respective ACD (percent separation) values were 0.29 (58%), 0.49 (98%), and 0.498 (99.96%). 

Figure 13A is a plot of petal length (V3) versus petal width (V4) for the /. versicolor 
(filled circles) and /. virginica (triangles) species. Figure 13B presents the two frequency 
distributions of the points in Figure 13A, and Figure 13C presents the ROC curve. Figure 13D 
shows the angle versus the ACD plot for the iris petal information; note that at a rotation of 280°, 
the maximum ACD value was achieved. Figure 14A shows the plot where the points in 
Figure 13A were rotated 280°, and Figure 14B presents its frequency distribution. Figure 14C 
shows the ROC curve for the 280° rotation of points. Using only the V3 and V4 variables 
produced an ACD of 0.495 (99% separation) compared to using all four variables, which yielded 
an ACD of 0.4998 or 99.6% separation (Figure 12, C and D). The difference in separation 
efficiency of the two species was negligible. 

The entire process can be repeated for discrimination purposes for any two groups or 
cases consisting of any number of variables. This process can be repeated for the /. setosa and 
/. virginica species. However, the analysis in Part 1 established that the petal lengths and widths 
were sufficient to provide a 100% separation (Table 3). This was also true for the separation of 
the /. setosa and /. versicolor species (Table 4). These qualitative and quantitative discrimination 
analyses were accomplished without the use of matrix algebra as required by multivariate data 
analysis methods. 
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3.3 Alternate Method of Analysis 

The above analysis has an equivalent procedure for attaining the same results. Instead 
of rotating the entire data set of points at every angle increment, a vector is drawn at 10° from the 
x axis. The points remain in their positions, and a perpendicular line is drawn from the 100 points 
onto the 10° vector. The vector undergoes a frequency distribution analysis and results in two 
frequency distributions. An ROC curve analysis takes place, and the vector, angle, and ACD are 
stored. The vector is then placed 20° from the x axis, and perpendicular lines are drawn to that 
new vector to denote the placement of the 100 points on that vector. This procedure provides the 
same results as the rotation of data space points. 

4. CONCLUSIONS 

A univariate statistical method was presented to collect, reduce, and analyze a 
multivariable response for replicates of more than two cases or groups. Conventional ROC curve 
analysis is the backbone for the method. The new statistical univariate data analysis method 
herein provides an ROC curve analysis with the ability to incorporate more than one variable and 
more than two groups in the analysis and conclusions for qualitative differentiation and 
selectivity purposes. The raw data remain in its inherent trend and nature. No data set 
normalization or scaling procedures are necessary. The mean and standard deviation, which are 
fundamental values for multivariate data analysis, are not needed. By nature, the ROC curve 
procedures can be applied to any kind of data distribution in addition to the classic Gaussian 
trend, such as step functions and skewed distributions, whether they are linear or nonlinear. 
Multivariate data analysis, on the other hand, necessarily forces a data set into a linear model, 
because the algorithm relies on a linear combination of variables. The ROC curve method 
presented here has the ability to translate a multivariable (or multidimension or multivector) data 
set into a one-variable or one-dimensional response analysis while preserving the inherent nature 
of the distribution, whether it is linear or nonlinear. 

ROC curve analyses yield results that determine which variables are best used for the 
critical decision-making process that distinguishes two experimental groups. The variables 
themselves dictate which of the entire data set will form subsets, and this provides groupings of 
experimental cases (spectral points in data space). The measurement vehicle for this 
determination is the ACD. For a multivariate dendrogram analysis, it is the distance between 
each case that determines which cases form the subgroups and the relative separation of each 
subgroup. 

The new algorithm using ROC curve techniques produces a "master" vector. The 
master vector (reference or library vector) is a systematic integration of the chosen set of 
variables. The master vector can be used in a practical situation to identify an unknown sample 
(case), and it will be presented elsewhere. This method also preserves the TP, FN, and FP 
probability quantitative information of a data set with multiple species of interest. 

Combining qualitative and quantitative aspects of data analysis into a univariate 
statistical method provides advantages in terms of algorithm understanding for the layman, 
computer efficiency, and information-rich analysis. 
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GLOSSARY 

ACD area between the curve and the diagonal 

AUC area under the curve 

FN false negative 

FP false positive 

mlz mass to charge ratio 

ROC receiver operating characteristics 

TN true negative 

TP true positive 

VI vector (variable) 1 

VI,2 statistical combination of vector (variable) 1 and vector (variable) 2 

VI-3 statistical combination of vectors 1, 2, and 3 
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APPENDIX A 
TABLES 

Table 1. Fisher data set. The set consisted of three species of iris flowers. Replicate 
measurements of four variables included sepal and petal lengths and widths. Data are in 
millimeters. 

/. setosa /. versicolor /. virginica 
Sepal 
Length 

Sepal 
Width 

Petal 
Length 

Petal 
Width 

Sepal 
Length 

Sepal 
Width 

Petal 
Length 

Petal 
Width 

Sepal 
Length 

Sepal 
Width 

Petal 
Length 

Petal 
Width 

50 33 14 2 65 28 46 15 64 28 56 22 
46 34 14 3 62 22 45 15 67 31 56 24 
46 36 10 2 59 32 48 18 63 28 51 15 
51 33 17 5 61 30 46 14 69 31 51 23 
55 35 13 2 60 27 51 16 65 30 52 20 
48 31 16 2 56 25 39 11 65 30 55 IS 
52 34 14 2 57 2S 45 13 58 27 51 19 
49 36 14 1 63 33 47 16 68 32 59 23 
44 32 13 2 70 32 47 14 62 34 54 23 
50 35 16 6 64 32 45 15 77 38 67 22 
44 30 13 2 61 28 40 13 67 33 57 25 
47 32 16 2 55 24 38 11 76 30 66 21 
48 30 14 3 54 30 45 15 49 25 45 17 
51 38 16 2 58 26 40 12 67 30 52 23 
48 34 19 2 55 26 44 12 59 30 51 18 
50 30 16 2 50 23 33 10 63 25 50 19 
50 32 12 2 67 31 44 14 64 32 53 23 
43 30 11 1 56 30 45 15 79 38 64 20 
58 40 12 2 58 27 41 10 67 33 57 21 
51 38 19 4 60 29 45 15 77 28 67 20 
49 30 14 2 57 26 35 10 63 27 49 18 
51 35 14 2 57 29 42 13 72 32 60 18 
50 34 16 4 49 24 33 10 61 30 49 18 
46 32 14 2 56 27 42 13 61 26 56 14 
S7 44 15 4 57 30 42 12 64 28 56 21 
50 36 14 2 66 29 46 13 62 28 48 18 
54 34 15 4 52 27 39 14 77 30 61 23 
52 41 15 1 60 34 45 16 63 34 56 24 
55 42 14 2 50 20 35 10 58 27 51 19 
49 31 15 2 55 24 37 10 72 30 58 16 
54 39 17 4 58 27 39 12 71 30 59 21 
50 34 15 2 62 29 43 13 64 31 55 18 
44 29 14 2 59 30 42 15 60 30 48 18 
47 32 13 2 60 22 40 10 63 29 56 18 
46 31 15 2 67 31 47 15 77 26 69 23 
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Table 1, continued. 

/. setosa /. versicolor /. virginica 
Sepal 

Length 
Sepal 
Width 

Petal 
Length 

Petal 
Width 

Sepal 
Length 

Sepal 
Width 

Petal 
Length 

Petal 
Width 

Sepal 
Length 

Sepal 
Width 

Petal 
Length 

Petal 
Width 

51 34 15 2 63 23 44 13 60 22 50 15 
50 35 13 3 56 30 41 13 69 32 57 23 
49 31 15 1 63 25 49 15 74 28 61 19 
54 37 15 2 61 28 47 12 56 28 49 20 
54 39 13 4 64 29 43 13 73 29 63 18 
51 35 14 3 51 25 30 11 67 25 58 18 
48 34 16 2 57 28 41 13 65 30 58 22 
48 30 14 1 61 29 47 14 69 31 54 21 
45 23 13 3 56 29 36 13 72 36 61 25 
57 38 17 3 69 31 49 15 65 32 51 20 
51 38 15 3 55 25 40 13 64 27 53 19 
54 34 17 2 55 23 40 13 68 30 55 21 
51 37 15 4 66 30 44 14 57 25 50 20 
52 35 15 2 68 28 48 14 58 28 51 24 
53 37 15 2 67 30 50 17 63 33 60 25 

Table 2. ROC ACD and percent separation between the /. versicolor and /. virginica species 
for sepal and petal widths and lengths. 

Variable ACD Separation, % 
1  Sepal length 0.2896 57.9 
2 Sepal width 0.1636 32.7 
3 Petal length 0.4822 96.4 
4 Petal width 0.4804 96.1 

Table 3. ROC ACD and percent separation between the /. setosa and /. virginica species 
for the sepal and petal widths and lengths. 

Variable ACD Separation, % 
1  Sepal length 0.4846 96.9 
2 Sepal width -0.3342 66.8 
3 Petal length 0.5000 100 
4 Petal width 0.5000 100 

Table 4. ROC ACD and percent separation between the /. setosa and /. versicolor species 
for the sepal and petal widths and lengths. 

Variable ACD Separation, % 
1  Sepal length 0.432600 86.5 
2 Sepal width -0.424600 84.9 
3 Petal length 0.500000 100 
4 Petal width 0.500000 100 
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APPENDIX B 
FIGURES 
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Figure 1.  Frequency plots of the sepal lengths of 50 separate /. versicolor (filled circles) and 
50 /. virginica (triangles) flowers. Data are from the Fisher data set. 
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Figure 2. ROC curve of the Figure 1 data set. 
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Versicolor vs Virginica 
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Figure 3. Frequency plots of the sepal widths of 50 separate /. versicolor (filled circles) and 
50 /. virginica (triangles) flowers. Data are from the Fisher data set.20 
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Figure 4. ROC curve of the data shown in Figure 3. 
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Figure 5. Histogram of the data in Table 2. Columns 1-4 represent sepal length, sepal width, 
petal length, and petal width, respectively. 
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Figure 6. Histogram of the data in Table 3. Columns 1^4 represent sepal length, sepal width, 
petal length, and petal width, respectively. 

APPENDIX B 25 



Setosa vs Virginica 
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Figure 7A. /. setosa (open circles) and /. virginica (triangles) frequency distribution plots 
for sepal length for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Figure 7B. /. setosa (open circles) and /. virginica (triangles) frequency distribution plots 
for sepal width for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Figure 7C. /. setosa (open circles) and /. virginica (triangles) frequency distribution plots 
for petal length for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Figure 7D. /. setosa (open circles) and /. virginica (triangles) frequency distribution plots 
for petal width for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Setosa vs. Versicolor 

> E £ i 

2  + 

40 50 60 

Sepal Length (mm) 

70 

Figure 8A. /. setosa (open circles) and /. versicolor (closed circles) frequency distribution plot 
for sepal length for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Figure 8B. /. setosa (open circles) and /. versicolor (closed circles) frequency distribution plot 
for sepal width for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Figure 8C. /. setosa (open circles) and /. versicolor (closed circles) frequency distribution plot 
for petal length for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Figure 8D.  /. setosa (open circles) and /. versicolor (closed circles) frequency distribution plots 
for petal width for 50 replicates of each species. Inset displays ROC curve for the analysis. 
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Figure 8E. Histogram of the iris measurement variables versus ACD data in Table 4. 
Columns 1^4 represent sepal length, sepal width, petal length, and petal width, respectively. 
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Figure 9A. Sepal length (VI) versus sepal width (V2) point plot distribution of the 50 replicates 
for both /. versicolor (filled circles) and /. virginica (triangles) at a 10° rotation of the points. 
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Figure 9B. Frequency distribution of points shown in Figure 9A. 
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Figure 9C. ROC curve of the frequency distribution shown in Figure 9B. 
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Versicolor vs. Virginica @ 10 degree angle 
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Figure 9D. Sepal length (VI) versus sepal width (V2) point plot distribution of the 50 replicates 
for both /. versicolor (filled circles) and /. virginica (triangles) at a 10° rotation of the points. 
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Figure 9E. Frequency distribution of points shown in Figure 9D. 
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Versicolor vs. Virginica @ 10 degree angle 
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Figure 9F. ROC curve of the frequency distribution shown in Figure 9E. 
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Figure 9G. Sepal length (VI) versus sepal width (V2) point plot distribution of the 50 replicates 
for both /. versicolor (filled circles) and /. virginica (triangles) at a 10° rotation of the points. 
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Versicolor vs. Virginica @ 330 degree angle 
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Figure 9H. Frequency distribution of points shown in Figure 9G. 
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Figure 91. ROC curve of the frequency distribution in Figure 9G. 
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Figure 10A. Plot of the ROC curves between 0° and 360° rotation of the point distribution 
in Figure 9D in 20° increments. 
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Figure 10B. Plot of angle of rotation of points in Figure 9D versus ACD. 
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versicolor vs. Virginica @ 0 degree angle 
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Figure 11A. Sepal length, sepal width (VI,2) versus petal length (V3) point plot distribution 
of the 50 replicates for both /. versicolor (filled circles) and /. virginica (triangles) with no 
rotation of the points. 
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Figure 11B. Sepal length, sepal width (VI,2) versus petal length (V3) point plot distribution 
of the 50 replicates for both /. versicolor (filled circles) and /. virginica (triangles) at a 
250° rotation. 
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Versicolor vs. Virginica @ 250 degree angle 
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Figure l lC. Frequency distribution of the data in Figure 1 IB. 
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i  - 

0.9 - 

                                                                         M                  1  

/ / 

 • • »    •    t 

0.8 • 

0.7 - 
Q. 
h- 
"— 0.6 - £ 
> 
*-> 0.5   ; 
'(/) 
c 
o 0.4 - 
(/) 

0.3 - 

0.2 - 

0.1  - 
.-' 

D 
0     A  1 1   1 1  

0.2 0.4 0.6 

1 -Specificity (1-TN) 

0.8 

Figure 11D. ROC curve plot of the frequency distribution in Figure 11C. 
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ACD vs. Rotated Angle (V1-3) 
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Figure l IE. Plot of angle of rotation of points versus ACD (E). 
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Figure 12A. Sepal length, sepal width, petal length (Vl-3) versus petal width (V4) point plot 
distribution of the 50 replicates for both /. versicolor (filled circles) and /. virginica (triangles) 
with no rotation of the points. 
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Versicolor vs. Virginica @ 330 degree angle 
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Figure 12B. Sepal length, sepal width, petal length (Vl-3) versus petal width (V4) point plot 
distribution of the 50 replicates for both /. versicolor (filled circles) and /. virginica (triangles) 
at a 330° rotation of the points. 
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Figure 12C. Frequency distribution at a 330° rotation of points. 
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Versicolor vs. Virginica @ 330 degree angle 
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Figure 12D. ROC curve plot of the data shown in Figure 12C. 
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Versicolor vs. Virginica @ 0 degree angle 
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Figure 13 A. Petal length (V3) versus petal width (V4) point plot distribution of the 50 replicates 
for both /. versicolor (fdled circles) and /. virginica (triangles) with no rotation of the points. 
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Versicolor vs. Virginica @ 0 degree angle 
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Figure 13B. Petal length (V3) versus petal width (V4) for both /. versicolor (filled circles) and 
/. virginica (triangles): frequency distribution at 0° rotation of the points. 
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Figure 13C. ROC curve of the data shown in Figure 13B. 
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ACD vs Rotated Angle (V3,4) 
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Figure 13D. Plot of angle of rotation of points shown in Figure 13A versus ACD. 
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Figure 14A. Petal length (V3) versus petal width (V4) point plot distribution of the 50 replicates 
for both /. versicolor (filled circles) and /. virginica (triangles) at 280° rotation of the points. 
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Versicolor vs. Virginica @ 280 degree angle 
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Figure 14B. Petal length (V3) versus petal width (V4) for both /. versicolor (filled circles) and 
/. virginica (triangles): frequency distribution at 280° rotation of points. 
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Figure 14C. ROC curve plot of the data shown in Figure 14B. 
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